RESULT

A is the correct answer

Function G continues decreasing to negative infinity while f(x) is a positive parabola

A is the correct answer

Function G continues decreasing to negative infinity while f(x) is a positive parabola

Question

asked 2021-06-12

Explain the difference between an absolute minimum and a local minimum.

a) There is no difference.

b) A function f has an absolute minimum at \(x=c\) if \(f(c)\) is the smallest function value on the entire domain.

c) A function f has an absolute minimum at \(x=c\) if \(f(c)\) is the smallest function value when x is near c, whereas f has a local minimum at c if \(f(c)\) is the smallest function value on the entire domain of f.

d) A function f has an absolute minimum at \(x=c\) if \(f(c)\) is the largest function value on the entire domain of f, whereas f has a local minimum at c if \(f(c)\) is the largest function value when x is near c.

e) A function f has an absolute minimum at \(x=c\) if \(f(c)\) is the largest function value when x is near c, whereas f has a local minimum at c if \(f(c)\) is the largest function value on the entire domain of f.

a) There is no difference.

b) A function f has an absolute minimum at \(x=c\) if \(f(c)\) is the smallest function value on the entire domain.

c) A function f has an absolute minimum at \(x=c\) if \(f(c)\) is the smallest function value when x is near c, whereas f has a local minimum at c if \(f(c)\) is the smallest function value on the entire domain of f.

d) A function f has an absolute minimum at \(x=c\) if \(f(c)\) is the largest function value on the entire domain of f, whereas f has a local minimum at c if \(f(c)\) is the largest function value when x is near c.

e) A function f has an absolute minimum at \(x=c\) if \(f(c)\) is the largest function value when x is near c, whereas f has a local minimum at c if \(f(c)\) is the largest function value on the entire domain of f.

asked 2021-01-28

(a) \(-2x + 3y = 4\)

(b) \(-2x + 3y = 6\)

(c) \(2x + 3y = 4\)

(d) \(2x + 3y = 6\)

(e) \(3x + 2y = 6\)

asked 2021-02-24

For \(f(x)=6/x\) and \(g(x)=6/x\), find the following functions.

a) \((f \cdot g)(x)\)

b) \((g \cdot f)(x)\)

c) \((f \cdot g)(7)\)

d) \((g \cdot f)(7)\)

asked 2021-02-24

\(\displaystyle{f{{\left({x}\right)}}}={\left\lbrace\begin{array}{cc} {x}&{w}{h}{e}{n}\ {x}{<}{0}\\{2}{x}&{w}{h}{e}{n}\ {x}\ge{0}\end{array}\right.}\)